Adenosine 3',5'-cyclic monophosphate protein kinase from bovine brain: inactivation of the catalytic subunit and holoenzyme by 7-chloro-4-nitro-2,1,3-benzoxadiazole.

نویسندگان

  • F T Hartl
  • R Roskoski
چکیده

NBD-C1 (7-chloro-4-nitro-2,1,3-benzoxadiazole) inactivates the catalytic subunit of adenosine 3’,5’-cyclic monophosphate (CAMP) depthdent protein kinase isolated from bovine brain by covalent modification. The reaction follows pseudo-first-order kinetics. The pseudo-first-order rate constant (k8p,,) shows a hyperbolic dependence on NBD-Cl concentration, suggesting formation of a reversible complex before covalent modification with a dissociation constant (4) of 150 pM. MgATP, MgADP, and adenosine protect against inactivation 75,60, and SO%, respectively, whereas ATP, ADP, or Mg2+ alone does not protect. This process was competitive in nature ( K , for adenosine 44 pM). Protein substrates (histone IIa, 2 mg/mL; Leu-Arg-Arg-Ala-ser-Leu-Gly, 1 mM) do not protect against inactivation; histone actually accelerates the rate of inactivation. Inactivation is associated with modification of 2.1 f 0.15 mol of cysteine/mol of catalytic subunit, determined spectrophotometrically and radioisotopically. Activity can be restored by treating inactivated enzyme with 2-mercaptoethanol. MgATP protects one cysteine on the Adenos ine 3’,5’-cyclic monophosphate (CAMP) dependent protein kinase (ATP:protein phosphotransferase, EC 2.7.1.37) catalyzes the phosphorylation of polypeptidic serine and threonine residues. The enzyme consists of dissimilar regulatory (R) and catalytic (C) subunits.’ Until recently the enzyme was reported to be activated by binding 2 mol of cAMP and dissociating into free C subunits and dimeric R2(cAMP)2 complexes (Gill & Garen, 1970; Tao et al., 1970; Rosen & Erlichman, 1975; Beavo et al., 1975). Recent studies, however, indicate that each regulatory dimer can bind 4 mol of cAMP (Corbin et al., 1978; Weber et al., 1979), yielding the following activation scheme: R2C2 + 4cAMP + R~(cAMP), + 2C From the Department of Biochemistry, Louisiana State University Medical Center, New Orleans, Louisiana 701 12. Received January 14, 1981; revised manuscript received April 14, 1982. This work was supported by Grant NS-15994 from the U S . Public Health Service. 0006-2960/82/0421-5 175$01.25/0 average from modification while protecting against inactivation. In the absence of CAMP, type I and I1 regulatory subunits from bovine skeletal muscle and type I1 regulatory subunit from bovine brain slow modification of the catalytic subunit by NBD-Cl. In the presence of 0.6 mM cAMP the brain holoenzyme is inactivated slower than the free catalytic subunit, but type I and I1 holoenzymes from skeletal muscle are inactivated faster than the free catalytic subunit. This suggests that the regulatory and catalytic subunits communicate even in the presence of saturating concentrations of CAMP. The effect of brain regulatory subunit on the reactivity of sulfhydryls in the catalytic subunit is opposite that of the skeletal muscle regulatory subunits. The latter’s effect on sulfhydryl reactivity is similar to that observed by Armstrong and Kaiser for the bovine heart enzyme [Armstrong, R. N., & Kaiser, E. T. (1978) Biochemistry 17, 28401, suggesting differences in the interactions of the regulatory and catalytic subunits in the enzymes from these different tissues. Work in this and other laboratories is aimed at identifying amino acids present at the active site of the C subunit as well as studying the mechanism of inactivation of the C subunit by regulatory proteins. Possible amino acid residues important to enzyme function have been assessed by chemical modification studies. Characterization of ethoxyformic anhydride inhibition of C subunit (Witt & Roskoski, 1975a), for example, suggests that a tyrosine residue occurs in the active site. Chemical modification of cysteine residues also inhibits enzyme activity (Sugden et al., 1976; Peters et al., 1977; Armstrong & Kaiser, 1978). I Abbreviations: R, regulatory subunit of CAMP-dependent protein kinase; C, catalytic subunit of CAMP-dependent protein kinase; FSBA, 5’-[p-(fluorosulfonyl)benzoyl]adenosine; NBD-CI, 7-chloro-4-nitro2,1,3-benzoxadiazole; DTNB, 5,5’-dithiobis(2-nitrobenzoic acid); Mops, 3-(N-morpholino)propanesulfonic acid; EDTA, ethylenediaminetetraacetic acid; Ser-peptide, Leu-Arg-Arg-Ala-Ser-Leu-Gly; DEAE, diethylaminoethyl; NaDodS04, sodium dodecyl sulfate.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Adenosine cyclic 3',5'-monophosphate dependent protein kinase: nucleotide binding to the chemically modified catalytic subunit.

5'-[p-(Fluorosulfonyl)benzoyl]adenosine (FSBA) inactivates the catalytic subunit of the adenosine cyclic 3',5'-monophosphate dependent protein kinase isolated from bovine cardiac muscle by covalent modification of lysine-71, whereas 7-chloro-4-nitro-2,1,3-benzoxadiazole (NBD-Cl) and 5,5'-dithiobis(2-nitrobenzoic acid) (DTNB) react with cysteines-199 and -343 to inactivate the enzyme. All three ...

متن کامل

Bovine brain adenosine 3',5'-monophosphate dependent protein kinase. Mechanism of regulatory subunit inhibition of the catalytic subunit.

Adenosine 3',5'-monophosphate (cAMP) dependent protein kinase (EC 2.7.1.37) catalyzes the phosphorylation of serine and threonine residues of a number of proteins according to the following chemical equation: ATP + protein leads to phosphoprotein + ADP. The DEAE-cellulose peak II holoenzyme from bovine brain, which is composed of regulatory and catalytic subunits, is resistant to ethoxyformic a...

متن کامل

Adenosine cyclic 3',5'-monophosphate dependent protein kinase: active site directed inhibition by Cibacron Blue F3GA.

Cibacron Blue F3GA, the polycyclic blue chromophore of Blue Dextran 2000, inhibits the catalytic subunit of bovine brain protein kinase. The rate of inactivation exhibits a hyperbolic dependence on the dye concentration. This suggests that an enzyme-dye complex forms prior to inactivation. Protein and peptide substrates or MgATP protects the enzyme against dye inactivation. Kinetic measurements...

متن کامل

Cyclic adenosine 3',5'-monophosphate and luteinizing hormone stimulated protein kinase from bovine corpus luteum: evidence for activation through separate mechanisms.

Protein kinases catalyze the transfer of the terminal phosphate of ATP to a variety of acceptor proteins [ 11. It has been demonstrated that cyclic adenosine 3’, 5’-monophosphate (cyclic AMP) activates protein kinase (holoenzyme, RC) by forming a complex with the regulatory subunit (R) to release the catalytic subunit (C) in the active state [2,3]. In a previous communication from this laborato...

متن کامل

Dissociation and reassociation of the phosphorylated and nonphosphorylated forms of adenosine 3':5' -monophosphate-dependent protein kinase from bovine cardiac muscle.

Adenosine 3':5' -monophosphate (cyclic AMP) -dependent protein kinase from bovine heart muscle catalyzes the phosphorylation of its regulatory, cyclic AMP-binding subunit. Phosphorylation enhances net dissociation of the enzyme by cyclic AMP. Chromatography on omega-aminohexyl-agarose was used to study the effects of phosphorylation on cyclic AMP binding and subunit dissociation and reassociati...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Biochemistry

دوره 21 21  شماره 

صفحات  -

تاریخ انتشار 1982